Indoor Localization via Discriminatively Regularized Least Square Classification

نویسندگان

  • Wentao Robin Ouyang
  • Albert Kai-Sun Wong
  • Kam Tim Woo
چکیده

In this paper, we address the received signal strength (RSS)-based indoor localization problem in a wireless local area network (WLAN) environment and formulate it as a multi-class classification problem using survey locations as classes. We present a discriminatively regularized least square classifier (DRLSC)-based localization algorithm that is aimed at making use of the class label information to better distinguish the RSS samples taken from different locations after proper transformation. Besides DRLSC, two other regularized least square classifiers (RLSCs) are also presented for comparison. We show that these RLSCs can be expressed in a unified problem formulation with a closed-form solution and convenient assessment of the convexity of the problem. We then extend the linear RLSCs to their nonlinear counterparts via the kernel trick. Moreover, we address the missing value problem, utilize clustering to reduce the training and online complexity, and introduce kernel alignment for fast kernel parameter tuning. Experimental results show that, compared with other methods, the kernel DRLSC-based algorithm achieves superior performance for indoor localization when only a small fraction of the data samples are used.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discriminatively regularized least-squares classification

Over the past decades, regularization theory is widely applied in various areas of machine learning to derive a large family of novel algorithms. Traditionally, regularization focuses on smoothing only, and does not fully utilize the underlying discriminative knowledge which is vital for classification. In this paper, we propose a novel regularization algorithm in the least-squares sense, calle...

متن کامل

Regularized Total Least Squares Based on Quadratic Eigenvalue Problem Solvers

This paper presents a new computational approach for solving the Regularized Total Least Squares problem. The problem is formulated by adding a quadratic constraint to the Total Least Square minimization problem. Starting from the fact that a quadratically constrained Least Squares problem can be solved via a quadratic eigenvalue problem, an iterative procedure for solving the regularized Total...

متن کامل

Image classification using kernel collaborative representation with regularized least square

Sparse representation based classification (SRC) has received much attention in computer vision and pattern recognition. SRC codes a testing sample by sparse linear combination of all the training samples and classifies the testing sample into the class with the minimum representation error. Recently, Zhang analyzes the working mechanism of SRC and points out that it is the collaborative repres...

متن کامل

Solving the L1 regularized least square problem via a box-constrained smooth minimization

In this paper, an equivalent smooth minimization for the L1 regularized least square problem is proposed. The proposed problem is a convex box-constrained smooth minimization which allows applying fast optimization methods to find its solution. Further, it is investigated that the property ”the dual of dual is primal” holds for the L1 regularized least square problem. A solver for the smooth pr...

متن کامل

A Comparative Performance Evaluation of Indoor Geolocation Technologies

As more location aware services are emerging in the market, the needs for accurate and reliable localization has increased and in response to this need a number of technologies and associated algorithms are introduced in the literature. Severe multipath fading in indoor areas, poses a challenging environment for accurate localization. In this article we provide a comprehensive overview of exist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJWIN

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2011